附件二:

2025年中国大学生机械工程创新创意大赛

无损检测创新实践与应用赛---射线检测技术竞赛

一、竞赛形式及竞赛大纲

参考教材:

中国机械工程学会无损检测分会人员认证培训教材《射线检测》(1、2、3级适用)

强天鹏.射线检测(第二版)[M]. 中国劳动社会保障出版社吕云翔,王志鹏著.深度学习[M].清华大学出版社(ISBN:9787302670728)

竞赛时间、题型、题量及分值:

理论竞赛: 笔试(闭卷),满分100分(其中人工智能知识测试共10分),60分钟,不允许延时,单选题50题(每题2分)。

实操竞赛:满分100分,60分钟,不允许延时,评定10张底片并填写检测报告,每张满分10分。

成绩计算:

个人总成绩 = 理论竞赛 50% + 实操竞赛 50%

团队总成绩 = 团队 3 名队员的个人总成绩之和

射线检测技术竞赛理论大纲

序号	考核内容		(A-掌握; B-	占总分百分比及掌握程度 (A-掌握; B-理解; C-了解;-不做要求)	
			本科	高职	
	基础知识		22	24	
		定义	A	A	
	1. 概论	检测方法分类	A	A	
		检测优缺点	A	A	
		2.1 原子与原子结构			
		2.1.1 元素与原子基本概念			
		a. 原子序数的定义	A	A	
		b. 原子量的定义	A	A	
		c. 核电荷数的定义	A	A	
		d. 质子、中子和电子的基本概念	A	A	
		2.1.2 核外电子运动规律			
		a. 电子轨道	A	A	
		b. 能级	A	A	
		c. 基态和激发态	A	A	
		d. 跃迁	A	В	
		2.1.3 原子核结构			
	2. 射线检测物理	a. 原子核的构成	A	A	
1-2		b. 核力	С	_	
1-2		c. 原子核能级	В	С	
		2.2 放射性衰变及基本规律			
	基础	2.2.1 放射性衰变			
		a. 放射性衰变的概念和衰变方式	A	A	
		b. 同位素、放射性同位素的概念	A	В	
		2.2.2 衰变规律			
		a. 放射性衰变基本规律	A	A	
		b. 活度、活度单位和比活度	A	В	
		c. 半衰期定义和衰变常数	A	A	
		d. 半衰期简单计算	A	В	
		e. 工业常用放射性同位素和衰变纲图	В	С	
		2.3 射线种类与性质			
		2.3.1 射线及种类	A	A	
		2.3.2 X 射线和 γ 射线			
		a. X 射线和 γ 射线产生	A	A	
		b. X 射线和 Y 射线本质和特性	A	A	
		c. 射线谱、射线强度和能量	A	A	
		d. X 射线连续谱的产生和特点	A	A	

		e. X 射线标识谱的产生和特点	В	С
		2.4 射线与物质的相互作用		
		2.4.1 射线与物质的主要作用		
		a. 光电效应	A	A
		b. 康普顿效应	A	A
		c. 电子对效应	В	С
		d. 瑞利散射	В	С
		e. 各种相互作用发生的相对几率	A	_
		2.4.2 单色窄束射线的衰减		
		a. 窄束射线	A	A
		b. 单色射线	A	A
		c. 吸收和散射	A	A
		d. 线衰减系数、质量衰减系数、半值层、衰减公	Δ.	
		式及计算	A	A
		2.4.3 宽束连续谱射线的衰减		
		a. 宽束射线、白色射线	A	A
		b. 散射比	A	A
		c. 线质	A	A
		d. 衰减公式	A	В
		e. 连续谱 X 射线的硬化	A	В
		2.5 射线照相原理和特点	A	A
	射线检测设备和器	· · · · · · · · · · · · · · · · · · ·	26	32
		3.1.1 X 射线机结构原理		
	3.1 X 射线机	a. 基本结构	A	A
		b. 基本工作原理	A	A
		3.1.2 X 射线机类型及适用性	В	В
		3.1.3 X 射线机的使用、维护		
		a. X 射线机的基本操作	A	A
		b. 训机	A	A
		c. X 射线机的维护和保养	A	В
	3.2 加速器	加速器	С	_
3		3.3.1 基本结构	A	A
3		3.3.2 基本工作原理	A	A
		3.3.3 γ射线源		
		a. 铱 192、钴 60、硒 75、铯 137 和铥 170 的能量	В	С
	3.3 γ射线设备	b. 铱 192、钴 60、硒 75、铯 137 和铥 170 的半衰	В	В
		期		Б
		3.3.4 γ射线机的使用、维护		
		a. γ射线机的基本操作	В	В
		b. γ 射线机的维护和保养	В	В
	3.4射线照相胶	3.4.1 感光原理		
	片	a. 胶片结构	A	A
	/ 1	b. 潜影形成	A	С

		3.4.2 胶片分类	A	A
		3.4.3 底片黑度及计算		
		a. 黑度的定义	A	A
		b. 黑度的计算	A	A
		3. 4. 4 胶片感光特性		
		a. 感光特性曲线	A	A
		b. 感光度、灰雾度、梯度、胶片粒度和宽容度	A	A
		3.4.5 胶片的使用和管理	A	В
		3.5.1 增感作用	A	A
		3.5.2 增感系数的定义和计算	A	В
		3.5.3 增感屏主要类型和特点		
	3.5 增感作用及	a. 金属增感屏及特点	A	A
	增感系数	b. 荧光增感屏及特点	В	С
		c. 金属荧光增感	В	С
		3.5.4 铅箔增感屏的结构和特点	A	A
		3.5.5 增感屏的使用注意事项	В	В
		3.6.1 像质计的作用与基本类型	A	A
		3.6.2 金属丝型像质计	A	A
	3.6 像质计	3.6.3 平板孔型像质计	В	С
		3.6.4 阶梯孔型像质计	В	С
		3.6.5 像质计的摆放	A	A
		3.7.1 标记		
		a. 标记种类和作用	A	A
		b. "B"标记的使用	A	A
	3.7 其他设备与器材	3.7.2 观片灯、安全灯、温度计、洗片槽或洗片机	В	С
		及烘干箱等	D	C
		3.7.3 黑度计		
		a. 工作原理	В	С
		b. 使用	A	A
		3.7.4 辐射防护器材: 剂量仪	С	С
		3.7.5 暗袋、屏蔽铅板等的使用	A	A
	射线照相检验技术	2	30	34
		4.1.1 主因对比度	A	A
	4.1 射线照相灵	4.1.2 影像质量三要素(对比度、不清晰度、颗粒	A	A
	敏度影响因素	度)		11
		4.1.3 射线照相灵敏度的定义和计算	A	A
4		4.1.4 缺陷的可识别性	В	С
		4.2.1 射线种类及能量的选择		
		a. 射线种类的选择	A	A
	4.2 透照工艺条	b. 射线能量的选择	A	A
	件的选择	4.2.2 焦距的选择		
		a. 最小焦距计算	A	A
		b. 诺模图的使用	A	A

		c. 焦距选择	A	A
		4.2.3 曝光量选择		
		a. 曝光量	A	A
		b. 互易律	A	A
		c. 平方反比定律	A	A
		d. 曝光因子	A	A
		e. 曝光量修正计算	A	С
		4.3.1 透照方式选择		
		a. 直缝透照(透照布置、方向、区域)	A	A
	4.3 透照方式	b. 环缝透照 (透照布置、方向、区域)	A	A
		4.3.2 一次透照长度、透照厚度比、有效评定长度、	Λ	A
		搭接长度概念	A	A
		4.4.1 曝光曲线的制作		
	4.4 曝光曲线应	a. (KV—T) 曲线	A	В
	4.4 喙 元 曲 线 应 用	b. (E—T) 曲线	A	В
	/TI	4.4.2 曝光曲线的使用	A	A
		4.4.3 厚度宽容度	A	С
		4.5.1 散射线来源和分类	A	В
	4.5 散射线控制	4.5.2 散射线对影像质量的影响	A	В
		4.5.3 散射线的控制方法	A	В
	4.6 典型工件射	4.6.1 变截面工件	A	В
	线检测	4.6.2 小直径管对接焊缝	A	A
		4.7.1 工艺文件编制		
	4.7 焊接接头透	a. 检验规程	В	-
	照工艺	b. 编制透照工艺卡	A	В
		4.7.2 检验基本过程	В	С
	4.8暗室处理技	4.8.1 暗室处理基本要求	A	A
	术	4.8.2 暗室处理基本技术	A	A
		4.9.1 辐射量及单位	A	A
		4.9.2 辐射生物效应及危害	A	В
		4.9.3 辐射防护的原则	A	A
		4.9.4 安全措施		
	4.9 辐射防护	a. 监控	A	A
		b. 记录	A	A
		c. 剂量限值体系	A	A
		d. 防护方法: 屏蔽、距离和时间	A	A
		4.9.5 辐射防护计算	A	В
	底片评定及标准		8	10
		5.1.1 环境设备要求	A	A
_	- 1 应让氏巨河		11	11
5	5.1 底片质量评	5.1.2 底片质量要求		
	定	a. 灵敏度	A	A
		b. 黑度	A	A

		1-1-		
		c. 标记	A	A
		d. 伪缺陷: 划痕、压痕、折痕和水迹	A	A
		e. 背散射	A	A
	5.2 底片影像分	5.2.1 缺陷影像识别:裂纹、未熔合、未焊透、夹	Δ.	Δ.
	5.2 版 月 泉 家 別	渣 和气孔	A	A
	7/1	5. 2. 2 其他	С	С
		5.3.1 一般要求		
	5. 3	a. 检验范围	A	В
	标准	b. 检验人员	A	В
	NB/T47013. 1-20	c. 检验设备器材	A	В
	通用要求和	d. 透照方式	A	В
	NB/T47013. 2-20	e. 黑度计等仪器校验	A	В
	15	5.3.2 焊接接头缺陷等级评定	A	A
		5.3.3 记录、评定及报告	A	A
	其他射线照相检测	技术	4	0
		6.1.1 实时成像	С	_
	6.1 成像原理	6. 1. 2 DR	В	ſ
6		6. 1. 3 CR	В	-
		6. 1. 4 CT	С	_
	6.2 系统	6.2 成像系统组成及对比	С	_
	6.3 图像质量	6.3 图像质量指标	С	_
	人工智能基础		10	0
	7.1人工智能简	7.1.1 人工智能内涵	A	_
	介	7.1.2 人工智能发展历史	A	_
		7.2.1 计算机视觉	A	_
	7.2 深度学习简	7.2.2 仿生学与深度学习	A	_
	介	7.2.3 现代深度学习	A	_
		7.2.4 传统方法与神经网络方法比较	В	_
		7.3.1 PyTorch		_
7		a. PyTorch 简介	В	_
	7.3 深度学习框架	b. PyTorch 的特点	В	_
		7.3.2 TensorFlow		_
		a. TensorFlow 简介	В	_
		b. TensorFlow 的特点	В	_
		7.4.1 机器学习概述		_
	7.4 机器学习基	a. 机器学习的分类	A	_
	础知识	b. 机器学习的模型构造过程	В	_
		7.4.2 监督学习	A	_

d. 次本部伏主 D	- - -
7. 4. 5 神经网络与深度学习 a. 感知器模型 B	
a. 感知器模型 B	
b. 前馈神经网络 B	_
c. 卷积神经网络 B	_
d. 其他类型结构的神经网络 C	_
7.5 回归模型 7.5.1 线性回归 B	_
7.5 回归侯型 7.5.2 Logistic 回归 C	_
7. 6. 1 神经网络基础概念 A	_
7. 6. 2 感知器	_
7.6 神经网络基 a. 单层感知器 B	_
7.6 神经网络基 础 b. 多层感知器 B	_
7. 6. 3 BP 神经网络	_
a. 梯度下降 B	_
b. 后向传播 C	_
7.7.1 卷积神经网络基础 A	_
7.7.2 卷积操作 B	_
7.7.3 池化层 B	_
7.7 卷积神经网 7.7.4 卷积神经网络 B	_
4 7.7.5 经典卷积神经网络结构	_
a. VGG 网络 B	_
b. InceptionNet B	_
c. ResNet B	_

二、射线检测技术竞赛实操项目评分标准表

`\.	姓名:	
1	、考号:	

						~~					
项目	分值		ì	平分项	评分标准	评分					
				底片上仅有1条危险性缺陷 (如裂纹、未熔合、未焊透)	扣8分						
		漏	裂纹、未熔合、未焊 透漏评	底片上有2条危险性缺陷(如 裂纹、未熔合、未焊透)	每漏评一条 扣 4 分						
		评		底片上有3条或3条以上危险 性缺陷(如裂纹、未熔合、未 焊透)	每漏评一条 扣 2 分						
1 <i>t</i> -h			 气孔、夹渣类条形、 	圆形缺陷, 咬边等其他缺陷漏评	每处扣2分						
1. 缺 陷 定 性	8分		裂纹、未熔合、未焊3	透相互错评	每处扣2分						
		错评	 裂纹、未熔合、未焊3	透与其他缺陷相互错评	每处扣3分						
			气孔、夹渣类条形、	圆形缺陷, 咬边等相互错评	每处扣1分						
								伪缺陷与缺陷错评	伪缺陷错评为裂纹或未熔合、 未焊透	每处扣3分	
			/ 以	伪缺陷错评为其他缺陷	每处扣1分						
	iei ii	ाना ग	/	50%<误差≤100%	扣2分						
2. 缺	10 ()		/ 吹怕的且任则里	误差>100%	扣5分						
陷量	10 分	タエ	《 华州 轩 陇 上 牢 泇 旦	3mm<误差≤5mm	扣2分						
		条	条形、线性缺陷长度测量 5mm<误差	5mm<误差	扣5分						
备注:											

三、射线检测技术竞赛底片评定记录表

身份证号: ______ 、准考证号: _____

考试组号: 2025—	得分:
-------------	-----

图像编号	缺陷定性、定量(当需要时)、定位(图示)				
图 逐 拥 夕	1)	2	3	4	评分
1-					
2-					
3-					
4-))))))	
5-))))))	
6-))))))	
7-					
8-					
9-					
10-					

说 明

- 1、答题: 每组共 10 张图像,除图像编号末尾为"M"的 4 张图像需定性、定量(尺寸测量)和定位外,其余 6 张图像只需定性和定位;当图像中有搭接标记时,只评定搭接标识以内的区域。
- 2、缺陷定位:将图像中缺陷的大致形状及分布区域位置,分别标注在答题卡的焊缝示意图上。3、缺陷描述:按规定的缺陷代码(A-裂纹;B-未熔合;C-未焊透;D-条形缺陷;E-圆形缺陷;F-咬边)在缺陷位置的上方进行标注;对于需定量的缺陷,其尺寸标注在上述代码之后(单位mm),例:"A/5.5"-代表"裂纹长5.5mm"。
- 4、对于 0.4mm 以下的圆形缺陷在定量时无需测量。